The TRUTH About How CodeSonar Compares to
PC-lint

Gimpel Software

Version 1, May 2016

As the recognized leader and standard bearer in the static analysis industry, we are flattered
to be considered as a benchmark in many product comparisons. While we rarely find it
necessary to respond to them, the Grammatech “white paper” comparing the CodeSonar
product to PC-lint has the odious distinction of being an exception. Instead of focusing on
the perceived merits of the Grammatech product, the white paper in question resorts to false
claims and misrepresentations about PC-lint, perhaps as a result of marketplace pressure,
which we feel should be balanced with a healthy dose of reality.

About PC-lint

PC-lint is a powerful and reputable C and C++ static analysis tool created by Gimpel
Software in 1985 and continually improved during the past 30 years. During this time PC-lint
has been an innovative leader in the industry by incorporating pioneering features such as
inter-function and inter-module Value Tracking, Strong Type Checking and Dimensional
Analysis, and User-Defined Function Semantics. PC-lint is trusted by many tens of thousands
of developers, QA analysts, software testers, and forensic analysts and supports dozens of
compilers and platforms, sports dozens of secondary features, and is deployed worldwide in
virtually every industry including safety critical fields such as medical and automotive.

About Grammatech’s white paper

The white paper entitled “How CodeSonar Compares To PC-lint (And Similar Tools)”, avail-
able from Grammatech’s website, purports to provide a comparison between the CodeSonar
product and PC-lint (other tools are discussed but the focus is on PC-lint) but in reality is
nothing more than a series of self-serving, misleading statements having little or no factual
basis. These false claims are then used to attempt to bolster the image of the CodeSonar
product at PC-lint’s expense.

Refutation Approach

There are several tactics employed by the white paper in an attempt to unfairly disparage
PC-lint including:

e Implying PC-lint’s technology and feature set has not significantly evolved over the
lifetime of the product.

¢ Intentionally misrepresenting the product goals and feature set of PC-lint.

o Making false claims about PC-lint’s capabilities.

We’ll break these down into two parts. In the Accusations section, we’ll talk about the
specific claims made throughout the white paper that, for the most part, are made without
any evidence and we’ll provide the facts. In the Misrepresentations by Example section,
we’ll take a look at the examples used in the white paper and provide the actual output of
PC-lint which refutes the claims made within those examples. The white paper also contains
a handful of legitimate criticisms which we’ll explore in the section Legitimate Criticisms.

Accusations

The Grammatech white paper makes several relatively vague and wildly inaccurate, assertions
including:

e Static analysis tools for finding programming problems have been around for decades.
The early generation tools, such as those in the lint family are nowadays considered
quite primitive. This includes commercial tools such as PC-lint and open-source tools
such as Cppcheck. In the past few years, these tools have been superseded by advanced
tools such as CodeSonar.

While we agree the original Unix “lint” tool was quite primitive, trying to make a connection
to the primitiveness of that tool based on the similar name of PC-lint is, at best, disingenuous.
For over 30 years, Gimpel Software has been an innovative leader in the static analysis realm
and PC-lint has been the benefactor of numerous technological advances over the years.

e CodeSonar’s primary purpose is to find serious defects in large code bases. The primary
purpose of those early generation tools is much more modest; they are mostly for finding
violations of superficial coding standards, and enforcing stronger type checking.

There is again an attempt to lump PC-lint with these “early generation tools” along with the
pretentious claim that PC-lint’s goals are “much more modest”. PC-lint’s primary purpose is
to find software defects in both small and large projects including “real” bugs such as buffer
overflows, out of bounds access, logic errors, and undefined behavior. PC-lint also aims to
serve the needs of our diverse customer base which extend beyond those features provided by
much of the competition. This includes support for the various MISRA standards, Strong
Type Checking, User-defined semantics, etc. Recognizing that no tool can realistically find
all bugs, PC-lint’s goals are more lofty. In addition to finding serious defects, PC-lint aims
to identify the types of practices leading to bugs in the first place. PC-lint’s wide range of
features shouldn’t be taken to imply a lack of capability when it comes to finding complex
bugs.

o Although the early generation tools claim to find some instances of the serious bugs, in
practice they are incapable of finding all but the most obvious.

Again, while this claim may be true of the original lint, it certainly isn’t true of PC-lint and
implying this correlation is both disingenuous and misleading.

After providing a series of inter-function examples and claiming PC-lint cannot find any of
the bugs (but actually finds almost all the bugs mentioned and some not mentioned by the
white paper), the following claim is made:

o All of the above examples are exceedingly simple. Real code is unfortunately much more
complicated; there are many compilation units, lots of levels of abstraction, and very
intricate aliasing relationships between variables. If the superficial early-generation
tools are incapable of finding fairly obvious defects in tiny examples, they are essentially
useless at finding the kinds of serious problems that occur in real life. CodeSonar on
the other hand employs a number of sophisticated techniques to model programs, so it
1s capable of finding real defects.

This statement starts with the false premise that PC-lint was unable to detect the bugs
presented. The white paper then goes on to list some of their distinguishing “techniques’
when in reality PC-lint employs the same types of techniques and in some cases has done so
for longer than CodeSonar has existed, despite the claim “None of the primitive tools use
any of these techniques.”

)

In discussing the user interface, the claim is made:

e There are many big differences between the user interfaces for these products. The
early-generation tools such as PC-lint or Cppcheck were originally designed to be run
from the command line, just like a compiler. Consequently they report their results as
text output. Although there are integrations with tools that provide higher-level user
interface features, these are weaker than a user interface that is completely integrated
with the analysis tool. Some examples are given below.

The first thing to note is the output of PC-lint is extremely customizable and out-of-the box
support is provided for textual, HTML, and XML reporting. Regarding graphic interfaces,
PC-lint’s approach has been to provide the tools necessary to integrate the product with
existing tools. We provide configurations for integrating PC-lint with many popular IDEs
and there are several third-party companies providing sophisticated integrations with IDEs
such as Visual Studio and Eclipse.

The white paper concludes with:

e The early generation static analysis tools such as PC-lint or Cppcheck use technology
that has not changed much in 30 years. As such they are ineffective at finding serious
programming defects. Users who continue to use such tools are failing to take advantage
of decades of advances in program analysis technology.

Like much of the white paper, there is absolutely no truth in these three statements. These
are complete fabrications supported only by Grammatech’s previous false and misleading
statements.

Misrepresentations by Example

Note about the examples

The examples provided in the white paper are often incomplete, presumably for demonstration
purposes, which does not help when trying to make concrete comparisons or verify the claims
made. Most examples referenced have therefore been “cleaned up” so they may be used as
complete, stand-alone examples (e.g. on our Online Demo) by placing the snippet inside of a
function, declaring types or functions not defined, correcting typos, etc. In all cases, the
changes do not affect the semantics or PC-lint’s ability to detect a bug, but simply make it
easier for a third-party to reproduce the results described.

Buffer Overrun (static)

void test_buffer_overrun(int p[]) {
pl4] = 1729;
}

void test_driver(void) {
int test[4];
test_buffer_overrun(test);

3

The claim made here is:

PC-lint does not detect this because it does not model how information flows across procedure
boundaries.

This is simply a false claim. Fifteen years ago PC-lint introduced inter-function value tracking,
the functionality the white paper claims is not present. In order to allow the programmer to
balance the needs of the project with the hardware resources available, PC-lint utilizes a
“multiple-pass” model allowing the user to control the depth in which to search for these kinds
of issues. The default depth is 1 whereas a depth of 2 is required to find most inter-function
issues. This is discussed throughly in the Reference Manual accompanying PC-lint, and is
explained in our website and Online Demo. Running PC-lint with the option -passes=2
(which is done automatically in the Online Demo) results in the following output:

During Specific Walk:
line 7: test_buffer_overrun([4]) #1
2 Warning 415: Likely access of out-of-bounds pointer (1 beyond end of
data) by operator '[' [Reference: file ipa2.c: lines 2, 7]
2 1Info 831: Reference cited in prior message
7 Info 831: Reference cited in prior message

Message 415 warns of the overflow in question along with how far beyond the end of the
array the overflow ocurred, as well as the locations leading to this conclusion. The last two
messages (831) are optional and are used to provide reference information in a standardized
form more easily digestible by IDEs, etc. The following examples will elide the 831 message
output (via the -e831 option) for considerations of space since the same information is
included in the warning message.

http://www.gimpel-online.com/OnlineTesting.html

Buffer Overrun (dynamic)

typedef unsigned long size_t;
void* malloc(size_t);

void test_buffer_overrun(int p[]) {
pl4] = 1729;
}

void test_driver(void) {
int *p = malloc(4);
test_buffer_overrun(p);

The white paper makes the same erroneous claim regarding PC-lint’s ability to detect such
issues:

PC-lint does not detect this for the same reason it does not detect the overrun of the
statically-allocated buffer above.

Running PC-lint with -passes=2 results in:

During Specific Walk:
line 10: test_buffer_overrun([1]7 | 07) #1
5 Warning 662: Possible creation of out-of-bounds pointer (4 beyond
end of data) by operator '[' [Reference: file ipa3.c: lines 5, 9, 10]

During Specific Walk:
line 10: test_buffer_overrun([1]7? | 07) #1
5 Warning 613: Possible use of null pointer 'p' in left argument to
operator '[' [Reference: file ipa3.c: lines 9, 10]

During Specific Walk:
line 10: test_buffer_overrun([1]? | 07) #1
5 Warning 661: Possible access of out-of-bounds pointer (4 beyond end
of data) by operator '[' [Reference: file ipa3.c: lines 5, 9, 10]

PC-lint will diagnose both the creation, and the use, of the out of bounds pointer as well as
the possibility the pointer could be null (malloc can return null and the example doesn’t
check for this possibility).

The call portrayal, test_buffer_overrun([1]? | 07) #1, given in the verbosity message
before the diagnostic provides information about the walk leading to the diagnostic. In this
case, the function call being examined is test_buffer_overrun which was called with a
pointer that either points to an array of one element ([1]17, e.g. a single int) or is a null
pointer (07). The question marks indicate we don’t know which is the case since the value
was not checked for null. PC-lint doesn’t just diagnose the issue, it tells you exactly how it
came to the conclusion.

Null Pointer Dereference
#define NULL (void *)0

void test_deref(int *p) {
*p = 55;
}

void test_driver(void) {
int *pil = NULL;
test_deref (pil);

Again the claim is made that recognizing such an issue is beyond the grasp of PC-lint:

This is probably the simplest possible example of a null-pointer dereference involving two
procedures. It is found only by CodeSonar.

And yet again the claim is proven false, again using -passes=2:

During Specific Walk:
File ipad4.c line 9: test_deref(0) #1
4 Warning 413: Likely use of null pointer 'p' in argument to operator
'unary *' [Reference: file ipad.c: lines 8, 9]

PC-lint will report on the null pointer dereference and provides the value tracking history
information to back it up.

Memory Leak

typedef unsigned long size_t;
void *malloc(size_t);
void free(void *);

void test_free(int *p, int x) {
if (p && x < 10)
free(p);
}
void test_driver(void) {
int *pil = malloc(20);
test_free(pil, 20);

The claim made by the white paper here is:

This example shows code where a buffer is allocated in one procedure, and freed in another,
but only if a certain condition is satisfied. It is found only by CodeSonar.

But running PC-lint with -passes=2 shows this not to be the case:

During Specific Walk:
line 11: test_free([5]7 | 07, 20) #1
8 Warning 429: Custodial pointer 'p' (line 5) has not been freed or
returned

Again, the issue is found by PC-lint, along with detailed information about the call leading
to the message.

Legitimate Criticisms

Every tool has strengths and weaknesses and armed with an understanding of a specific
tool’s weaknesses, it is easy to create contrived examples to highlight those weaknesses. The
white paper contains some carefully crafted examples exploiting legitimate, albeit well-known,
weaknesses in PC-lint. Most of these examples are due to limitations related to how PC-lint
tracks pointer-related information. The Value Tracking system has been enhanced in PC-lint
Plus (the next iteration of PC-lint, currently in Beta) and these limitations have been
removed. The below examples contain defects which are not diagnosed by PC-lint, instead
the output from PC-lint Plus is presented to demonstrate the continual improvements made
to the product.

Uninitialized Variables

int foo() {
int iret;
int *p = &iret;
return iret;

PC-Lint Plus produces:

4 warning 530: likely using an uninitialized value
return iret;

2 supplemental 891: allocated here
int iret;

Use After Free

typedef unsigned long size_t;
void *malloc(size_t);
void free(void *);

void foo() {
char *p = (char *)malloc(10);

char *q = p;

if (p) {
plo]l = 'X';
free(p);
ql0l = 'Y';
}

PC-lint Plus produces:

11 warning 449: memory was likely previously deallocated
ql0] = 'Y';

10 supplemental 891: deallocated here
free(p);

6 supplemental 891: allocated here
char *p = (char *)malloc(10);

Double Free

typedef unsigned long size_t;
void *malloc(size_t);
void free(void *);

void test_double_free(int *p) {
if (p)
free(p);
}

void test_driver(void) {
int *pil = (int *)malloc(sizeof (int));
if (pil)
test_double_free(pil);
if (pil)
free(pil);

PC-lint Plus produces:

15 warning 2432: memory was potentially deallocated
free(pil);

15 supplemental 894: during specific walk free([4]@0/1)
free(pil);

7 supplemental 891: deallocated here
free(p);

11 supplemental 891: allocated here
int *pil = (int *)malloc(sizeof (int));

Buffer Overruns

void foo() {
char buffer[10];
char *pc;
pc = buffer;
for (int i = 0; i <= 10; i++)
*pc++ = 'X';

This example contains a buffer overrun in the for loop. The models employed by PC-lint and
PC-lint Plus to track value state information do not (yet) take into account the relationship
between i and pc in this example. This is a legitimate limitation of PC-lint’s current
abilities. While we could easily provide a similarly simple example exploiting the weaknesses
of CodeSonar, doing so would not accomplish anything. As mentioned above, we recognize
every tool has a unique set of strengths and weaknesses and all tools will be able to catch
bugs that others cannot. Instead of highlighting weaknesses in other tools, we are content to
focus on the strengths of PC-lint and work to continually improve the product to meet our

customers’ needs.

Summary

In this table we summarize the key misleading statements made by Grammatech about
PC-lint and we provide the corrected information.

Claim

Reality

PC-lint is a primitive tool in the family of
the original Unix lint.

PC-lint fails to detect all but the most
obvious bugs.

PC-lint isn’t focused on finding serious
issues in large projects.

PC-lint is a text-only tool not suitable for
use with continuous integration tools.

PC-lint doesn’t provide history information
when diagnosing complex issues.

PC-lint is designed only for use by
developers.

PC-lint only understands issues within a
single file.

PC-lint is not able to catch every possible
software defect.

PC-lint is a state-of-the-art static analysis
tool independently developed and
continually improved over the last 30 years
with award-winning innovations including
inter-function and inter-module Value
Tracking.

PC-lint is capable of finding complex bugs
using a wide range of leading edge
technologies, including bugs in the
examples in the white paper.

PC-lint is successfully used with projects of
all sizes, from hundreds of lines of code, to
millions.

PC-lint can provide reporting in virtually
any format including plain text, HT'ML,
and XML and is used by customers in
many ways, including integration with CI
tools like Hudson and Jenkins.

PC-lint provides a significant amount of
information when warranted, including the
series of calls and values leading to a
particular determination.

PC-lint is designed for and used by
software developers, QA analysts, software
testers, and forensic experts.

PC-lint has been able to provide
whole-program, inter-module analysis since
its inception. This was one of the original
differentiators of PC-lint.

While no static analysis tool can claim to
catch all defects, PC-lint has a track record
as a reliable tool capable of catching many
complex, real-world issues and is constantly
being improved.

10

Conclusion

While Gimpel Software welcomes honest feedback and criticism from customers and competi-
tors alike, the false and misleading claims made in the referenced white paper are neither
honest nor constructive and do not serve the best interests of programmers or the static
analysis community. Relying on false and disparaging claims about competing products is a
strategy which reveals more about Grammatech than its competitors.

From the white paper, it appears the main points of notable difference between PC-lint and
CodeSonar are:

e CodeSonar has a tightly integrated GUI while PC-lint’s focus is on providing extensible
mechanisms which can be used to integrate PC-lint with existing tools such as Visual
Studio, Eclipse, etc.

¢ CodeSonar has a more narrow focus which results in a smaller feature set than PC-lint.

e CodeSonar provides several features PC-lint does not yet support. Specifically men-
tioned are Metrics and Taint Analysis, both features being developed for a future
version of PC-lint Plus. Of course, PC-lint contains a large number of features not
supported by CodeSonar.

11

	About PC-lint
	About Grammatech's white paper
	Refutation Approach
	Accusations
	Misrepresentations by Example
	Buffer Overrun (static)
	Buffer Overrun (dynamic)
	Null Pointer Dereference
	Memory Leak

	Legitimate Criticisms
	Uninitialized Variables
	Use After Free
	Double Free
	Buffer Overruns

	Summary
	Conclusion

